

Final Report

Analysis of Internal Thermal Mass, Radiant Heating and Cooling, Energy Recovery and Solar Sorption Cooling and Heating.

Date Submitted: April 4, 2012

Biobehavioral Health Building

The Pennsylvania State University | Biobehavioral Health Building | University Park, PA | Mechanical | Ling | Jake Copley

Jake Copley | Mechanical | Biobehavioral Health Building | University Park, PA

Building Statistics

Building Size: 93,500 SF

Number of Stories: 4 Above +Mech Penthouse + 1 Below Grade

Estimated Project Completion Date: November 2012

Overall Project Cost: \$48.1 Million

Project Delivery Method: Design-Bid-Build

Mechanical

Six variable air volume air handling units with economizers.
Perimeter heating use in conjunction with VAV system.

• Heating and cooling supplied via campus steam and chilled water loops.

Electrical/Lighting

• PSU owned transformer connected to the campus normal power loop.

•Emergency power is provided from the campus emergency power loop.

•T8 luminaires with dimming ballasts and LED down lights are typical in common areas.

•T5HO luminaires with dimming ballasts are typical in classrooms.

Northeast entrance and plaza off the HUB lawn

Southeast entrance near the Henderson South Building and Health and Human Development Building

West entrance off the Old Main Lawn

http://www.engr.psu.edu/ae/thesis/ portfolios/2012/RJC5149

Project Team

Owner: The Pennsylvania State University

Architect: Bohlin Cywinski Jackson

CM: Massaro CM Service

MEP/Fire Protection: Bruce E. Brooks Associates

Structural Engineer: Robert Silman Associates

Civil Engineer: Gannett Fleming, Inc.

Landscape Architect: Michael Vergason

Architecture

• Aesthetically similar to the Henderson North Building.

• Provides general purpose classroom space, office and research space.

• HUB Lawn Plaza will provide a new venue for events and performances.

<u>Structure</u>

• Continuous concrete spread footing with isolated spread footings for interior support.

•Moment, braced frame steel structure.

Table of Contents

List of Figures	5
List of Tables	6
Credits and Acknowledgements	8
Executive Summary	9
Section 1: Mechanical System Description	10
1.1 General Building Information	10
1.2 Architecture	11
1.3 Building Enclosure	11
1.4 Existing Mechanical System Summary	12
1.5 Mechanical Space Required	13
1.6 System Description	13
Air-side Operations	13
Water-side Operations	14
1.7 Energy Sources	16
1.8 Design Conditions	16
1.8 Mechanical System Cost	17
Section 2: ASHRAE Standard and LEED Evaluation	17

2.1 Design Ventilation Requirements	17
2.2 Design vs Modeled Heating and Cooling Load Estimates	18
2.3 Existing Modeled Energy Usage Estimate	19
2.4 LEED Analysis	20
Sustainable Sites	21
Water Efficiency	23
Energy and Atmosphere	23
Materials and Resources	24
Indoor Environmental Quality	25
Section 3: Overall System Evaluation	28
Section 4: Proposed Redesign Overview	28
4.1 Alternatives Considered	28
Thermal Mass	28
Heating and Cooling Distribution	29
Heat recovery	29
Solar Thermal System	29
4.2 Tools and Methods	29
Section 5: Thermal Mass	29
Section 6: Radiant Heating and Cooling	32
6.1 Component Selection	32
6.2 Calculations	33
6.3 Controls	34

Section 7: Heat Recovery	34
Section 8: Solar Thermal System	35
8.1 Component Selection	35
8.2 Calculations	35
8.4 System Configuration	38
8.5 Pump and Pipe Sizing	41
Section 9: Electrical Breadth	41
9.1 Objective	41
9.2 Calculations	41
9.3 Equipment Adjustment and Additions	42
Section 10: Structural Depth	42
10.1 Objective	42
10.2 Calculations	42
Section 11: Energy and Cost Evaluation	45
11.1 Energy Savings	45
11.1 Cost	45
Section 12: Conclusion and Recommendation	46
12.1 Thermal Mass	47
12.2 Radiant System	47
12.3 Heat Recovery	47
12.4 Solar System	47
12.5 Recommendation	47

References	49
Appendix: Radiant Calcs	50
Appendix: Solar Thermal Calcs	51
Appendix: Pump Sizing Calcs	52
Appendix: Structural Breadth	53

List of Figures

Figure 1.1.1: Site Location	10
Figure 1.2.1: Old Main Mall Entrance	11
Figure 1.2.2: HUB Lawn Entrance	11
Figure 1.2.3: Southeast Entrance	11
Figure 1.3.1: Green Roof Detail	12
Figure 1.6.1: AHU 1 Flow Diagram	14
Figure 1.6.2: AHU 2-6 Flow Diagram	15
Figure 1.6.3: How Water Flow Diagram	15
Figure 1.6.4: Chilled Water Flow Diagram	16
Figure 2.2.1: ASHRAE Climate Zones for United States Locations	18
Figure 2.3.1: Energy Consumption Breakdown	20
Figure 5.0.1: Existing Internal Mass	30
Figure 5.0.2: Internal Mass Option One	30
Figure 5.0.3: Internal Mass Option Two	31
Figure 6.1.1: Typical Office Radiant Panel Layout	32
Figure 6.1.2: Typical Classroom Radiant Panel Layout	33
Figure 8.2.1: Solar Panel Locations	36
Figure 8.3.1: Chiller Performance Curve at 50 F CHW	
Figure 8.4.1: Heating, Cooling and Solar Exposure Relationship	39
Figure 8.4.2: Penthouse Equipment Layout	40
Figure 8.4.3: System Flow Diagram	40
Figure 10.2.1: Typical Solar Panel Layout with Supporting Structure	45
Figure 11.1.1: System Annual Energy Consumption	45
Figure 12.5.1: New System Annual Energy Consumption Comparison	48

List of Tables

Table 1.4.1: Existing Air Handling Units	12
Table 1.4.2: Existing Pump Schedule	13
Table 1.5.1: Mechanical Room Area	13
Table 1.7.1: Energy Rates	16
Table 1.8.1: Outdoor Design Conditions	16
Table 1.8.2: Indoor Design Conditions	17
Table 2.1.1: Minimum Ventilation	17
Table 2.2.1: Modeled vs. Design Heating and Cooling Loads	18
Table 2.3.1: Lighting and Equipment Loads	19
Table 2.3.2: BBH Occupancy Schedules	19
Table 2.3.3: Annual Building Energy Consumption	19
Table 2.4.1: Sustainable Sites	21
Table 2.4.2: Water Efficiency	23
Table 2.4.3: Energy Atmosphere	23
Table 2.4.4: Materials and Resources	24
Table 2.4.5: Environmental Quality	25
Table 4.1.1: System Alternatives	28
Table 5.0.1: Precondition Conditions	29
Table 5.0.2: Thermal Mass Capacity	31
Table 6.4.1: Radiant Pump Sizes	34
Table 8.2.1: Solar Thermal System Design Constraints	35
Table 8.3.1: Cooling Tower Sizing Conditions	
Table 8.5.1: Solar, Chiller, Condenser Pump Sizes	41
Table 9.2.1: New Equipment Power Requirements	41
Table 9.2.2: Schedule of VFD/Single Speed Motors	42
Table 9.3.2: New AHU Fan Power Requirements	42

Table 10.2.1: Wall Dead Load Calculations	43
Table 10.2.2: Deck Loads	43
Table 10.2.3: Beam Loads	44
Table 10.2.4: Solar Panel Loads	44
Table 11.1.1: Alternative 4 (Total) First Cost	46
Table 11.1.2: System Payback Period	46

Credits and Acknowledgements

I would like to say thank you to several individuals who have provided support, advice, encouragement and more throughout the course of this capstone thesis project as well as my time in the Penn State Architectural Engineering program as a whole. I greatly appreciate the positive impact they have made on my educational experience and overall well being. To the following I say thank you:

- Benjamin Hibbard Sales Representative, SunMaxx Solar Inc.
- Greg Hlatky, P.E., LEED AP H & H Sales Associates, Inc.
- Tim Jones, P.E., LEED AP Project Engineer, Massaro Corporation Inc.
- Moses Ling, P.E., R.A Thesis Advisor
- Kevin Nestor Project Manager, Massaro Corporation Inc.
- Kevin Parfit, P.E. Thesis Instructor
- Mike Prinkey Operations Engineer, The Pennsylvania State University
- Rachel Prinkey Project Manager, The Pennsylvania State University
- Matt Ritsko Previous Project Manager, The Pennsylvania State University
- Jelena Srebric, Ph.D., P.E. Mechanical Instructor
- Stephen Treado, Ph.D., P.E. Mechanical Instructor
- Brad Wilson, P.E., LEED AP BD+C Senior Associate, PAE Consulting Engineers, Inc.
- My family and friends for all of their encouragement.

Executive Summary

The goal of this analysis is to find methods that reduce the annual building energy consumption. Four alternatives were investigated to meet this goal.

The first alternative explored internal thermal mass. The goal of increasing the thermal mass, was to reduce the modeled heating and cooling loads, in order to reduce the size of mechanical equipment required to make more room for addition equipment that would be added in the fourth alternative.

Shifting heating and cooling loads from an all air system to partial VAV and radiant heating and cooling system was the second system explored. The goal of this system was to convert from fan power to pump power. This system also provided the opportunity to reduce the size of the AHUs to make room for equipment in the last alternative

Heat recovery units are the third system that was explored and added to each AHU to further reduce the annual energy consumption.

The fourth alternative considered was the addition of a solar thermal system that would provide supplemental heating and cooling to the radiant system. This system required additional equipment that required space which was provided by reducing other mechanical equipment sizes in the first two alternative systems. This system provides greater flexibility, because it can be altered to supplement heating and cooling loads, not only the radiant system, but also the AHUs or DHW if necessary.

Following the mechanical system alternatives, two breadth topics were studied: one, a structural analysis that considered the additional structure required from the load of solar panels on the roof and the weight of the internal thermal mass on the floors, and two, an electrical analysis that looked at the effects on the electrical distribution equipment from adding additional pumps and including a chiller and cooling tower into the system.

A brief summary of the findings in my mechanical depth are as follows:

- Thermal Mass
 - 3.5% reduction in the modeled cooling load and a 2.5% reduction in annual building energy consumption.
- Radiant System
 - 2% reduction in annual building energy consumption.
- Heat Recovery
 - 7.6% reduction in annual building energy consumption with a 23 year payback period.
- Solar Thermal System
 - 13% reduction in heating and 4% reduction in cooling energy consumption with a 23 year payback period.

Section 1: Mechanical System Description

1.1 General Building Information

Building NameHenderson Addition - Biobehavioral Health Building (BBH)Location and SiteThe Pennsylvania State University, University Park, PA. The site is
located between Henderson North and Henderson South just north of
College Ave. between Old Main and the HUB.Building Occupant NameBiobehavioral Health (College of Health and Human Development)Occupancy or Function TypeAssembly Group A-3, Business Group B, Mixed Occupancies
SizeSize93,500 SFNumber of Stories4 Above + Mechanical Penthouse + 1 BelowStart/End Construction DatesOctober 25th 2010/November 2012
LostProject Delivery MethodDesign-Bid-Build

Figure 1.1.1: Site Location

1.2 Architecture

Due to the historic nature of Henderson North, BBH was designed to be aesthetically similar it. The differences between the two buildings are responses of the growth of sustainable design and the need for student activities. The building is served with main double loaded corridors down the middle of the building, connecting the three main entrances on the east and west sides of the building. General purpose classrooms are located on the ground and first floors for ease of access for students. Offices, project and research spaces are located on the upper floors.

Limestone and brick clad the building, paying their respects to Henderson North. The limestone veneer wraps into the main entry ways on both the east and west entrances. All three entrances are located on heavy cross campus traffic areas. One entrance is on the West end off the Old Main Lawn as seen in Figure 1.2.1. Another entrance is located on the HUB lawn (Figure 1.2.2) on the Northeast corner of the building along with the third entrance on the Southeast corner (Figure 1.2.3). Salvaged Elm wood from the Penn State Campus can be seen as accent pieces, benches and cabinetry throughout the building.

1.3 Building Enclosure

The facade is aesthetically very similar to Henderson North with limestone veneer up to the second floor followed by brick on the remaining floors. There are also limestone

Figure 1.2.1: Old Main Mall Entrance

Figure 1.2.2: HUB Lawn Entrance

Figure 1.2.3: Southeast Entrance

accent pieces around the building in similar fashion to Henderson North. On the northeast and southeast corners of the building there are glass curtain walls surrounding the main stairwell and entrances.

The roofing system of the steep slope roof on the penthouse is slate over rigid insulation. Surrounding the penthouse is an adhered EPDM roofing membrane over rigid insulation. There are also large green roof areas surrounding the penthouse that are composed of a vegetated exposed roof with four inches of lightweight planting mix over a drainage/water retention mat on top of rigid insulation as shown in Figure 1.3.1.

Figure 1.3.1: Green Roof Detail

1.4 Existing Mechanical System Summary

BBH was designed with Penn State's University-wide Environmental Stewardship Initiative in mind. The building was designed to meet the U.S. Green Building Council's (USGBC) LEED Green Building Rating System. The University desired the building to meet the requirements for LEED Silver.

The main HVAC system consists of six central variable air volume (VAV) air handling units (AHUs) located in the basement and penthouse. Generally, the AHUs are located as close to the zone(s) they serve to minimized unnecessary ductwork. Supply VAV terminals with individual thermostats are located in each space. A direct digital control (DDC) building automation system is used throughout the building. The DDC system will interface with the University's Office of Physical Plant to allow for building level control. Table 1.4.1 shows the AHUs in the building with their airflow rates, heating and cooling capacities. Table 1.4.2 shows the five main pumps used for chilled and hot water.

Table 1.4.1: Existing Air Handling Units				
AHU	Airflow (CFM)	Minimum OA (CFM)	Cooling Capacity (Tons)	Heating Capacity (kBTU/hr)
Core Offices	16,500	1,450	29.0	392.7
Classrooms	9,500	2,400	23.0	236.7
South Offices	13,300	650	19.0	335.8
North Offices	7,100	360	12.0	179.8
Core	14,300	1,000	32.0	386.3
Conference	9,200	250	17.0	226.3

Table 1.4.2: Existing Pump Schedule				
Mark	GPM	RPM	HP	VFD? (Y/N)
1 (Chilled Water)	350	1,750	5	Y
2 (Chilled Water)	350	1,750	5	Y
3 (Chilled Water Supplement)	22.5	1,750	0.75	Y
4 (Heating Hot Water)	400	1,750	5	Y
5 (Heating Hot Water)	400	1,750	5	Y

1.5 Mechanical Space Required

There are a total of three mechanical rooms, as shown in Table 1.5.1, comprised of just over 8,000 square feet or 9% of the building area is used for mechanical equipment. Two mechanical rooms are located in the basement and house one AHU each, and the remaining four AHU's are located in the penthouse. There are a total of four duct shafts that extend through the entire height of the building.

Table 1.5.1: Mechanical Room Area		
Room Area (SF)		
M004	1,926	
M021	533	
Penthouse	5,018	
Mechanical Shafts	560	
Total	8,037	
Total Building Area %	9%	

1.6 System Description

A building automation system (BAS) is used throughout BBH to ensure proper control of chilled and hot water systems along with controlling all AHU's. The chilled and hot water loops are monitored to ensure proper pressure differential to properly condition the building.

Air-side Operations

BBH uses VAV systems to condition all its spaces. Each AHU contains a preheat coil and cooling coil along with mixed air, preheat and cooling coil discharge air temperature sensors. Each VAV terminal unit receives air from their associated AHU which is controlled by the DDC control system. Each terminal unit is also supplied with hot water for reheat. All the AHUs are identical except for AHU-1 which uses a relief fan while AHU2-6 use return fans as shown in Figures 1.6.1 and 1.6.2 below.

Water-side Operations

Hot Water System

Hot water is produced from two plate frame heat exchangers (HTX1, HTX 2) that are connected to the campus steam loops. Hot water is circulated through the building by two pumps with variable frequency drives (VFDs) feeding the hot water supply (HWS) lines as shown below in Figure 1.6.3. The pumps are staged in a primary/standby configuration. Steam also feeds a shell and tube heat exchanger to provide domestic hot water (DHW).

Chilled Water System

Similar to the hot water system, chilled water is provided via campus chilled water loops. Chilled water is circulated to the AHU's by the chilled water supply (CHWS) lines by three pumps each with a VFD as shown in Figure 1.6.4 below. Two of the pumps are staged in a primary/standby configuration, the third pump is non-simultaneous with primary/secondary. This third pump feeds the secondary flow in the system which is mainly the fan coil units that serve the server and telecom rooms which required year round cooling.

Figure 1.6.1: AHU 1 Flow Diagram

Figure 1.6.3: Hot Water Flow Diagram

Figure 1.6.4: Chilled Water Flow Diagram

1.7 Energy Sources

BBH's energy sources consist of chilled water and steam from the campus supplied loops along with electricity. Electricity for the campus is supplied through five substations by Allegheny Power. Campus rates of chilled water, electricity and steam are shown below in Table 1.7.1.

Table 1.7.1: Energy Rates		
Energy Source Campus Rate		
Chilled Water (\$/ton-hour)	0.22	
Electricity (\$/kWh)	0.09387	
Steam (\$/1000lbs)	24.59	

1.8 Design Conditions

BBH is located in University Park, PA, however weather data of Pittsburgh, PA was used for the modeling purposes while Erie, PA weather data was used for the design. The outdoor design conditions for Pittsburgh were obtained from TMY2 weather data and can be seen in Table 1.8.1 where they can be compared to Erie design conditions. Indoor design conditions were obtained from Penn State design intent documents and can be see in Table 1.8.2.

Table 1.8.1: Outdoor Design Conditions				
Pittsburgh, PA		Erie, PA		
Season	Dry Bulb (°F)	Wet Bulb (°F)	Dry Bulb (°F)	Wet Bulb (°F)
Summer	89.1	72.5	90	74

Biobehavioral Health Building | University Park, PA | Mechanical | Ling | Jake Copley | Final Report | Due Date 4/4/2012

Table 1.8.1: Outdoor Design Conditions				
Cassar	Pittsburgh, PA		Erie, PA	
Season	Dry Bulb (°F)	Wet Bulb (°F)	Dry Bulb (°F)	Wet Bulb (°F)
Winter	1.76	-	0	-

Table 1.8.2: Indoor Design Conditions				
Space		Dry Bulb (occupied)	Humidity	Dry Bulb (unoccupied)
Turical Space	Cooling	75	50%	85
Typical Space	Heating	70	-	60
Server and Telecom	Cooling	72	50%	72
Room	Heating	-	-	-

1.8 Mechanical System Cost

The estimated cost of the mechanical system is \$3,424,000, which is about 7% or about \$36.60/SF of the total project cost.

Section 2: ASHRAE Standard and LEED Evaluation

2.1 Design Ventilation Requirements

Ventilation rate calculations from ASHRAE Standard 62.1-2007 were performed to verify BBH's mechanical systems provide enough ventilation air to the building. Standard 62.1 looks at the outdoor air intake rates based on space types, along with the number of occupants and floor area of each space.

Table 2.1.1 below is a summary of the ventilation rates determined from Tech Report One, where a more detailed analysis of minimum ventilation rates can be found.

Table 2.1.1: Minimum Ventilation				
AHU	Max Occupied OA CFM	ASHRAE 62.1 OA CFM	Compliance (Y/N)	
1 (Core Offices)	4500	3476	Y	
2 (Classrooms)	2750	4112	N	
3 (South Offices)	4750	993	Y	
4 (North Offices)	3150	962	Y	
5 (Core)	5000	2041	Y	
6 (Conference)	2700	2075	Y	

Six AHUs were analyzed, it was determined that all but one of the AHUs comply with the minimum ventilation specified by ASHRAE Standard 62.1-2007 as seen above in Table 2.1.1. A possible reason for this could be the variation in occupancy values used for the classrooms (AHU-2). A reduced occupant density of 35 persons/1000sf was used in lieu of 150 persons/1000sf to more accurately model the

approximately known occupant density of the space. The occupancy estimate of the lecture hall is to be around 250 persons.

2.2 Design vs Modeled Heating and Cooling Load Estimates

The location is University Park, PA, which lies in zone 5A. Zone 5A is described as a cool humid climate. This climate zone was determined using Figure 2.2.1 from ASHRAE Standard 90.1 - 2007.

Figure 2.2.1: ASHRAE Climate Zones for United States Locations

The energy model was created using DesignBuilder with EnergyPlus to simulate the annual energy consumption of BBH. A more detailed analysis of the energy model can be found in Tech Report Two.

Table 2.2.1: Modeled vs. Design Heating and Cooling Loads			
System	Load	SF Per Basis	
Cooling Modeled (Tons)	143	654 SF/ton	
Cooling Designed (Tons)	178	438 SF/ton	
Heating Modeled (kBTU/	2381	39 SF/kBTU	
hr)			
Heating Designed (kBTU/	1758	44 SF/kBTU	
hr)			
Modeled SA CFM	62633	0.803 CFM/SF	
Design SA CFM	69900	0.896 CFM/SF	

Table 2.2.1 above, shows the modeled heating and cooling loads compared to the design loads.

2.3 Existing Modeled Energy Usage Estimate

The energy model was created of the existing building to determine the heating and cooling loads as well as the annual energy consumption. Table 2.3.1 shows the internals load assumptions. The occupancy schedules used in the model can be seen in Table 2.3.2.

Table 2.3.1: Lighting and Equipment Loads			
Space/Equipment	Load	Source	
DHW Consumption (gal/ SF/day)	0.008099	Assumption	
Computer Gain (W/SF)	0.2	Assumption	
Office Equipment Gain (W/SF)	2	Assumption	
Lighting Density (W/SF)	1	Assumption	

Table 2.3.2: BBH Occupancy Schedules			
Space	Monday-Friday	Weekends	Holiday
Classrooms	7am to 11pm	Linescupied with	Heating Setback: 50F
Office, Labs, Support Spaces	7am to 8pm	Override	Cooling Setback: 85F

Table 2.3.3 below shows the annual energy consumption of BBH broken down by source for comparison. BBH costs approximately \$2.10/SF to operate annually. Figure 2.3.2 shows the percentage of total energy usage for each building source.

Comparing the results to the Commercial Building Energy Consumption Survey (CBECS) 2003, BBH annually consumes 90.7 kBTU/SF compared to about 88.7 kBTU/SF for buildings sizes of 50,001 to 100,000 SF.

Table 2.3.3 Annual Building Energy Consumption						
Source	kBTU	kWh	Ton-hour	Lbs Steam (x1000)	Utility Rate	Cost (\$/Year)
Heating	2,110,561	618,570	-	1,768	24.59	\$43,466
Cooling	2,235,736	655,257	186,311	-	0.22	\$40,988
DHW	183,818	53,874	-	154	24.59	\$3,786
Plug Load	2,357,301	690,885	-	-		\$64,853
Lighting	1,071,500	314,039	-	-		\$29,479
System Fans	141,818	41,564	-	-	0.09387	\$3,902
System Pumps	384,232	112,612	-	-		\$10,571

Figure 2.3.1: Energy Consumption Breakdown (% of Total)

2.4 LEED Analysis

A LEED assessment was completed for BBH using LEED-NC V2.2 by the designers. This report was prepared using the current version of LEED, LEED 2009 for New Construction and Major Renovations.

Sustainable Sites

Table 2.4.1: Sustainable Sites			
Credit: Sustainable Sites	Action		
Prerequisite 1: Construction Activity Pollution Prevention	Stockpiles are protected to prevent water and wind erosion.		
Intent: To reduce pollution from construction activities by controlling soil erosion, waterway sedimentation and airborne dust generation.	A tire wash is used to help prevent sedimentation of storm sewers.		
Credit 1: Site Selection Intent: To avoid the development of inappropriate sites and reduce the environmental impact from the location of a building on a site.	The site selected for BBH was previously a parking lot for Henderson North, Bridge and South. This complies with the requirements of site selection of LEED 2009.		
Credit 2: Development Density and Community Connectivity Intent: To channel development to urban areas with existing infrastructure, protect greenfields and preserve habitat and natural resources.	BBH's site is located on a previously developed site, has pedestrian access, is within half a mile of at least 10 basic services and residential area.		
Credit 4.1: Alternative Transportation - Public Transportation Access Intent: To reduce pollution and land development impacts from automobile use.	A bus stop is located within a quarter of a mile from BBH.		
Credit 4.2: Alternative Transportation - Bicycle Storage and Changing Rooms Intent: To reduce pollution and land development impacts from automobile use.	Secure bicycle racks are provide around BBH and showers are provided for the occupants.		
Credit 4.4: Alternative Transportation - Parking Capacity Intent: To reduce pollution and land development impacts from automobile use.	No new parking is provided.		

Table 2.4.1: Sustainable Sites			
Credit: Sustainable Sites	Action		
Credit 5.2: Site Development - Maximize Open Space Intent: To promote biodiversity by providing a high ratio of open space to development footprint.	Green roofs are provided, covering the majority of the roof and a large outdoor pedestrian-oriented hardscape is provided.		
Credit 6.1: Stormwater Design - Quantity Control Intent: To limit disruption of natural hydrology by reducing impervious cover, increasing on-site infiltration, reducing or eliminating pollution from stormwater runoff and eliminating contaminates.	A cistern is provided that collects rainwater runoff from the roofs and is used to irrigate the landscape. A storm retention system was also installed to reduce the load on the storm system during heavy rain.		
Credit 7.2: Heat Island Effect - Roof Intent: To reduce heat islands to minimize impacts on microclimates and human and wildlife habitats.	A vegetated roof will be installed which will cover at least 50% of the roof area.		

Water Efficiency

Table 2.4.2: Water Efficiency			
Credit: Water Efficiency	Action		
Prerequisite 1: Water Use Reduction Intent: To increase water efficiency within the building to reduce the burden on municipal water supply and wastewater systems.	The building specifications call for low flow and sensor operated plumbing fixtures.		
Credit 1: Water Efficient Landscaping Intent: To limit or eliminate the use of potable water or other natural surface or subsurface water resources available on or near the project site for landscape irrigation.	Storm water runoff from the roof is collected in a underground cistern. The collected water is utilized to irrigate the surrounding landscaping.		

Energy and Atmosphere

Table 2.4.3: Energy and Atmosphere			
Credit: Energy and Atmosphere	Action		
Prerequisite 1: Fundamental Commissioning of Building Energy Systems Intent: To verify that the project's energy-related systems are installed and calibrated to perform according to the owner's project requirements, basis of design and construction documents.	Facility Dynamics will be the commissioning agent and will check/test all major mechanical and electrical systems used throughout BBH.		
Prerequisite 2: Minimum Energy Performance Intent: To establish the minimum level of energy efficiency for the proposed building and systems to reduce environmental and economic impacts associated with excessive energy use.	A whole building energy simulation was completed using Carrier HAP v4.4 and the simulated proposed building had 28.5% improvement over the baseline.		
Prerequisite 3: Fundamental Refrigerant Management Intent: To reduce stratospheric ozone depletion.	Building specifications call for refrigerations that comply with ASHRAE 15: Safety Standard for Refrigeration Systems.		
Credit 1: Optimized Energy Performance Intent: To achieve increasing levels of energy performance beyond the prerequisite standard to reduce environmental and economic impacts associated with excessive energy use.	The proposed building was modeled and has an expected 28.5% improvement in energy efficiency compared to the baseline building.		

Table 2.4.3: Energy and Atmosphere		
Credit: Energy and Atmosphere	Action	
Credit 3: Enhanced Commissioning	The commissioning process was utilized during the	
Intent: To begin the commissioning process early	design phase of BBH.	
in the design process and execute additional		
activities after systems performance verification is		
completed.		
Credit 4: Enhanced Refrigerant Management	None of the the AHU's use refrigerants.	
Intent: To reduce ozone depletion and support early compliance with the Montreal Protocol while minimizing direct contributions to climate change.	The back-up split system uses R-410a which is a non-ozone depleting refrigerant. The fire suppression system does not use CFC, HCFC or halons as a suppressant.	
Credit 6: Green Power	Penn State currently purchases about 20% of its	
Intent: To encourage the development and use of grid-source, renewable energy technologies on a net zero pollution basis.	annual power demand from renewable sources.	

Materials and Resources

Table 2.4.4: Materials and Resources		
Credit: Materials and Resources	Action	
Prerequisite 1: Storage and Collection of Recyclables	BBH will have recycle collection stations throughout the building.	
Intent: To facilitate the reduction of waste generated by building occupants that is hauled to and disposed of in landfills.		
Credit 2: Construction Waste Management Intent: To divert construction and demolition debris from disposal in landfills and incineration facilities. Redirect recyclable recovered resources back to the manufacturing process and reusable materials to appropriate sites.	All waste material is collected in two dumpsters on site and is later separated off site in Tyrone, PA. All materials that can be salvaged or recycled will be logged.	
Credit 4: Recycled Content Intent: To increase demand for building products that incorporate recycled content materials, thereby reducing impacts resulting from extraction and processing of virgin materials	Recycled materials are used throughout the building.	

Table 2.4.4: Materials and Resources			
Credit: Materials and Resources	Action		
Credit 5: Regional Materials	Regional materials and products are used		
Intent: To increase demand for building materials and products that are extracted and manufactured within the region, thereby supporting the use of indigenous resources and reducing the environmental impacts resulting from transportation.	throughout the project.		
Credit 7: Certified Wood	The majority of wood materials used in the building		
Intent: To encourage environmentally responsible forest management.	are certified with the Forest Stewardship Council's criteria.		

Indoor Environmental Quality

Table 2.4.5: Environmental Quality			
Credit: Indoor Environmental Quality	Action		
Prerequisite 1: Minimum Indoor Air Quality	All spaces are mechanically ventilated.		
Performance			
Intent: To establish minimum indoor air quality			
(IAQ) performance to enhance indoor air quality in			
buildings, thus contributing to the comfort and			
well-being of the occupants.			
Prerequisite 2: Environmental Tobacco Smoke	Smoking is prohibited in all PSU buildings.		
(ETS) Control			
Intent: To prevent or minimize exposure of building			
occupants, indoor surfaces and ventilation air			
distribution systems to environmental tobacco			
smoke (ETS).			
Credit 1: Outdoor Air Delivery Monitoring	Co2 sensors are provide throughout the building to		
Intent: To provide capacity for ventilation system	ensure proper ventilation rates are being provided.		
monitoring to help promote occupant comfort and			
well-being.			

Table 2.4.5: Environmental Quality		
Credit: Indoor Environmental Quality	Action	
Credit 3.1: Construction Indoor Air Quality	Equipment is stored in a clean dry location. Duct	
Management Plan - During Construction	openings are protected with plastic.	
Intent: To reduce indoor air quality (IAQ) problems resulting from construction or renovation and promote the comfort and well-being of construction workers and building occupants	Low VOC materials are used in the building thus	
Management Plan - Before Occupancy	reducing the need for an extensive "flush out" Air	
Intent: To reduce indoor air quality (IAQ) problems resulting from construction or renovation to promote the comfort and well-being of construction workers and building occupants.	filtration media will be changed as deemed necessary.	
Credit 4.1: Low-Emitting Materials - Adhesives and		
Sealants		
Intent: To reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.		
Credit 4.2: Low-Emitting Materials - Paints and		
Coatings		
Intent: To reduce the quantity of indoor contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.	Low VOC adhesives, sealants, paints, coatings, flooring materials and composite wood and	
Credit 4.3: Low-Emitting Materials - Flooring Systems	the project. Each material is logged and submitted to LEED.	
Intent: To reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.		

Table 2.4.5: Environmental Quality			
Credit: Indoor Environmental Quality	Action		
Credit 4.4: Low-Emitting Materials - Composite			
Wood and Agrifiber Products			
Intent: To reduce and quantity of indoor air			
contaminants that are odorous, irritating and/or			
harmful to the comfort and well-being of installers			
and occupants.			
Credit 5: Indoor Chemical and Pollutant Source	Low VOC materials are used extensively		
Control	throughout the building, reducing the need for		
Intent: To minimize building occupant exposure to	extensive air purging and filtration.		
notentially bazardous particulates and chemical			
pollutants.			
Credit 6.1: Controllability of Systems - Lighting	BBH uses occupancy sensors extensively		
Intent: To provide a high lovel of lighting system	throughout the building.		
control by individual accupants or groups in multi			
control by individual occupants of groups in multi-			
comfort and well-being			
Credit 6 2 Controllability of Systems Thermal	Individual controls are provided for the majority of		
Comfort	building spaces. The controls allow occupants to		
Comort	anable adjustments to meet individual peeds and		
Intent: To provide a high level of thermal comfort			
system control by individual occupants or groups	preferences.		
in multi-occupant spaces and promote their			
productivity, comfort and well-being.			
Credit 7.1: Thermal Comfort - Design	All spaces are designed with independent		
Intent: To provide a comfortable thermal	temperature control to allow for maximum comfort		
anvironment that promotes accurate productivity	and control.		
and well being			
and wen-being.			
Greait 7.2: Thermal Comfort - Verification	A thermal comfort survey of building occupants		
Intent: To provide for the assessment of building			
occupant thermal comfort over time.			

There are numerous changes from V2.2 to LEED 2009, but most changes are simply assigned point values to various credits. A couple credits from V2.2 were condensed in LEED 2009 and increased in point value.

Comparing LEED V2.2 to LEED 2009, BBH still has the ability to achieve a minimum of LEED Certification. The differences between the two versions are minimal, resulting in a well ranked building.

Section 3: Overall System Evaluation

Overall, the mechanical system of BBH is well designed with flexibility, comfort and efficiency in mind. A unique combination of a full VAV air system and perimeter radiant heat system was used to effectively create a comfortable environment for students and faculty. The various building zones/spaces were cleverly divided amongst six air handling units. The six units are divided into the following zones: core offices, classrooms, south offices, north offices, core and conference.

The estimated cost of the mechanical system is \$3,424,000 which is about 7% of the total building cost. This is approximately \$36/SF. This low cost could be due to the overall simplicity of the system. Since the entire building is conditioned by campus supply loops, expensive heat pumps, chillers, cooling towers and other equipment are not necessary. Using campus supplied utilities greatly simplified portions of the design and reclaimed potentially lost space due to extra mechanical equipment.

Section 4: Proposed Redesign Overview

The main objective of the mechanical depth is to reduce the energy consumption of BBH. This section explains the proposed system alternatives and some expected results. These four alternatives were analyzed and compared to determine which system or combination of systems provides the greatest reduction in energy consumption in an economic fashion. Table 4.1.1 organizes the different components in each alternative. After modifying the wall composition and mechanical system, the effects of these modifications on the structure and electrical distribution system will be explored in electrical and structural breadths.

Table 4.1.1: System Alternatives				
Variable	Alternatives			
	1 (Existing)	2	3	4
Mechanical System			New AHU +	New AHU +
	Full VAV	Full VAV	Radiant Heating	Radiant Heating
			and Cooling	and Cooling
Economizer	Х	Х	Х	Х
Heat Recovery			Х	Х
Thermal Mass	Existing	Option 1	Option 1	Option 1
Solar Thermal				v
System				^
Sorption Cooling				Х

4.1 Alternatives Considered

Thermal Mass

Increasing the internal thermal mass of BBH can provide the ability to shave peak heating and cooling loads, reducing the size of the mechanical equipment required, thus reducing upfront costs of the air system. When pre-heating and pre-cooling the building over night, the thermal mass will store that energy and release it during the day when it is needed. Pre-Cooling the building can save more energy

because cooling equipment will run more efficiently at night due to lower ambient temperatures. Using the thermal mass can allow for a more flat load profile to downsize mechanical equipment and allow the equipment to run near full load more often, improving system performance.

Heating and Cooling Distribution

By altering the cooling and heating delivery method, energy can be saved by switching from fan power to pump power. Radiant heating and cooling will be investigated, in effort to reduce the energy required to move energy around the building. This can also reduce the space required for mechanical equipment, which will provide more room for additional equipment being proposed by the solar energy conversion system. An VAV air system will still be employed to provide adequate ventilation for the building.

Heat recovery

By incorporating a heat recovery system into the mechanical system of BBH, a reduction in energy consumption required to heat and cool the various spaces within the building can be achieved. By combining the savings of the heat recovery system and the ability of onsite energy generation, the annual energy consumption can be reduced.

Solar Thermal System

BBH is well oriented and suited for solar energy conversion systems along with having a roof height that is well above any surrounding buildings or vegetation. By implementing a solar energy conversion system consisting of solar thermal panels, an adsorption chiller and associated cooling tower, the total energy demand from the campus chilled water and steam loops can be reduced.

4.2 Tools and Methods

Extensive research was done with the proposed alternatives being considered to ensure a proper understanding of each element. Tools such as Excel and DesignBuilder with EnergyPlus were used throughout the research and design process.

DesignBuilder with EnergyPlus were be used to obtain reasonably accurate cooling, heating and electrical loads. The effects of increased thermal mass were explored, then the radiant heating and cooling system was be designed to offset loads from the air system to the new hydronic radiant system. Once the radiant system was design, each AHU was resized with its new respective load and, based on air face velocities in the AHU's, enthalpy wheels were selected for each AHU.

Excel was used for detailed design calculations of the radiant heating and cooling system along with the solar energy conversion system. The radiant system must be sized to provide adequate heating and cooling to the various building spaces. The solar energy conversion must be size to provide the maximum amount of hot water to properly operate the adsorption chiller and provide heating in the winter.

Section 5: Thermal Mass

A thermal mass study was the first area explored with the goal of reducing the design loads of BBH. Three combinations of partition mass were compared under three separate sets of conditions to see the effects of pre-heating and pre-cooling. Table 5.0.1 shows the three preconditioning conditions that were examined.

Table 5.0.1: Precondition Conditions		
Condition	Hours	
Precool Only	9	
Preheat and PreCool	9	
Preheat Only	9	

The three mass options that were explored can be see below in Figures 5.0.1, 5.0.2, 5.0.3. Option one reflects the existing mass that is currently in the building which is composed of traditional drywall, one layer each side, on 2x4 steel studs. Option two is composed of 4" brick on 8" heavyweight CMU block against 4" steel studs with drywall and a cork board finish. The last mass that was studied was the heaviest, composing of 8" heavyweight CMU block finished on both sides with 4" brick. The potential energy storage of each mass option was calculated.

Figure 5.0.1: Existing Internal Mass

Figure 5.0.2: Internal Mass Option One

Biobehavioral Health Building | University Park, PA | Mechanical | Ling | Jake Copley | Final Report | Due Date 4/4/2012

Figure 5.0.3: Internal Mass Option Two

 $Q_{\text{stored}} = \rho d c$

 $b=\sqrt{(\rho c k)}$

Where,

b= heat absorption coefficient

 ρ = density

c= specific heat

k= thermal conductivity

d= layer density

Table 5.0.2: Thermal Mass Capacity					
Material	C (BTU/lb F)	ρ (lb/ft³)	K (BTU/hr ft F)	В	Q _{stored} (BTU/SF
					<i>F</i>)
8" Concrete	0.156	144	0.54	3.48	14.98
4" Brick	0.2	123	0.4	3.14	8.20
2 x 5/8"	0.259	78	0.25	2.25	2.10
Gypsum					
1/4" Cork Board	0.485	5.4	0.028	0.27	0.05

Table 5.0.2 above shows the different heat absorption coefficients and capacities. These values were used in the guidance of selecting a new wall composition with a greater capacity to store energy and reduce design heating and cooling loads. The final option that was chosen was option one, with precooling only. It performed equally as well as option two, but option one was chosen because the additional cork finish helps the acoustics of the room since a significant portion of the acoustical ceiling

tiles will be replaced with radiant panels. Option two results in a 5 ton reduction in the modeled cooling load as well as a 1.3 kBTU/SF reduction in energy consumption.

Section 6: Radiant Heating and Cooling

A radiant heating and cooling distribution system was investigated to reduce the energy consumption by shifting from fan power to pump power. Floors 1-4 were divided into four zones: north, south, core and corridor. The ground floor was broken into two zones, lecture hall and office. A radiant system was not included in the ground floor.

6.1 Component Selection

Radiant ceiling tiles were chosen for ease of installation and future renovations. Each panel is silk screened to match the appearance of a typical acoustical ceiling tile. A maximum of 60% ceiling coverage was applied in an effort to prevent a significant acoustical effect on the spaces. Figure 6.1.1 and 6.1.2 show how the radiant panels would be laid out and piped together in a typical office and classroom respectively.

Figure 6.1.1: Typical Office Radiant Panel Layout

Figure 6.1.2: Typical Classroom Radiant Panel Layout

6.2 Calculations

SA temperature was pushed down to 45 F which reduced the air flow required to meet the latent load. This also allowed more of the sensible load to be shifted onto the radiant system. An entering water temperature of 50 F was chosen to supply each series of radiant panels with a Δ T of 22.5 F.

When in heating mode, the entering water temperature was design to be 128 F with a Δ T of 55.5 F. This was chosen to supply adequate heating and be able to operate off the hot water outlet from the adsorption chiller.

In order to calculate heating and coolings loads required of the radiant system, the heating and cooling capacity of the supply air (SA) had to be determined. Starting with the ventilation supply rate, the heating and cooling capacity of the air was determined as a starting point. If the latent cooling capacity of the SA was unable to meet the latent load in the spaces, the SA rate was increased until all of the latent load was met by the SA. To determine the cooling capacity of the SA the following were used:

Q_{latent}=4840 V_r (W_{room}-W_{SA})

Where,

Q_{latent}=Latent Load

V_r=Air Flow

Biobehavioral Health Building | University Park, PA | Mechanical | Ling | Jake Copley | Final Report | Due Date 4/4/2012

W_{room}=Room Humidity Ratio W_{SA}=Supply Air Humidity Ratio

Q_{sensible}=1.1 V_r (T_{room}-T_{SA})

Where,

Qsensible=Sensible Load

Troom=Room Temperature

T_{SA}=Supply Air Temperature

The same procedure was applied for calculating the heating load, except the adjusted SA flow rates from cooling were used to calculate SA heating capacity.

Since a large portion of the heating and cooling load was transferred from the air system to the radiant system, new air handling units were selected. The number of air handling units was reduce from 6 to 5 and broken up by zone; north, south, core, corridor and lecture hall. To simplify the task of selecting fans, the worst case scenario for the largest fan size was selected providing room for improvement in actual system sizing and performance. Fan sizes and loads can be seen in more detail under section 9.

6.3 Controls

Each room will be independently controlled with a four pipe system. The air system will remain as a VAV system and the radiant system will meet reheat loads if required. Before reheat is used, the terminal unit will reduce the air flow until the minimum ventilation rate is reached. Once the minimum air flow is reached, reheat will be activated by the BAS in the radiant system. Each space will be equipped with CO2 sensors to detect occupants and increase supply air flow to meet the latent load requirements to prevent condensation from forming on the radiant panels. 6.4 Pump and Pipe Sizing

Riser piping was sized to handle the volume of water required to heat and cool the building. Pumps were selected based on the head loss in the system and the flow required. Table 6.4.1 shows the pump sizing requirements and the HP and impeller size required.

Table 6.4.1: Radiant Pump Sizes				
Pump	System Head loss (ft)	System Flow (gpm)	Pump HP	Impeller Size (in)
Radiant Heating	25	48.1	0.75	8
Radiant Cooling	31	67.1	1	9

Section 7: Heat Recovery

Heat recovery units were explored to further reduce the annual energy consumption. An enthalpy wheel was chosen and incorporated into the design. An enthalpy wheel was added to each AHU with an

efficiency of approximately 80.5% at a face air speed of around 600 FPM. Approximately 2.5 kBTU/SF or a 5% mechanical system energy reduction was see when adding an enthalpy wheel to the system.

Section 8: Solar Thermal System

8.1 Component Selection

A solar thermal array was designed to be installed on the roof of the penthouse and the south green roof. Evacuated tube collectors were selected to provide reliable and efficient operation in the cold weather seen in State College, PA. Shading calculations were done to ensure that none of the panels would be shaded by other panels or the dormer covering the door from the penthouse to the green roof.

An adsorption chiller was selected to produce chilled water for the radiant cooling system during the summer. An adsorption chiller was chosen due to the small sizes they are available in and the low electrical demand of the equipment.

8.2 Calculations

The design of the solar thermal system was guided by the heat input requirements of the adsorption chiller and by the area available on the roof for the panels. Table 8.2.1 shows the constraints that controlled the design.

Table 8.2.1: Solar Thermal System Design Constraints		
Chiller Heat Input 195 F HW at 40 GPM		
Available Roof Area	4921 SF	

The most limiting constraint is the available room area for solar panels. Due to shading issues, the entire area of available roof was not used. Rather the entire sloped roof covering the penthouse was covered in panels along with a single strip on the green roof below, along the south wall. All panels were set at a slope of approximately 40°. To simplify the analysis, the hours of 9am to 4pm were considered as hours that provided reasonable solar insolation. Due to geographical location there are dangers of freezing and contrary due to the high load demand there are dangers of boiling in the solar loop and in order to keep the system as simple as possible a drain-back configuration was avoided. A 85% by volume propylene glycol-water mixture was used that will decrease the freezing and increase the boiling temperature below and above all danger points in the system. Figure 8.2.1 shows the areas where the solar panels would be installed.

Figure 8.2.1: Solar Panel Locations

TMY 2 weather data was used to obtain average hourly direct normal solar radiant for a typical day in each month. The direct normal solar radiant and daily average dry bulb (DB) temperatures, also from TMY2 weather data, were used to calculate the collector outlet temperature. The following equations were used to determine collector outlet temperature:

Qu=Ac Fr [S-UL(Ti-Ta)]

Where,

Qu=Useful Energy

Ac=Collector Area

F_r=Collector Heat Removal Factor

S=Average Direct Normal Solar Radiation

U_L=Thermal Losses

Ti=Inlet Temperature

T_a=Ambient Temperature

Q_u=m C_p (T_o-T_i)

Where,

Biobehavioral Health Building | University Park, PA | Mechanical | Ling | Jake Copley | Final Report | Due Date 4/4/2012

m=Mass Flow

C_p=Specific Heat

To=Outlet Temperature

The heat exchanger effectiveness was also considered in the solar system performance:

Q_{HX}=ε (mC_p)_{min} (T_{co}-T_i)

Where,

Q_{HX}=Heat Exchanged through Heat Exchanger

ε=Heat Exchanger Effectiveness

T_{co}=Collector Outlet Temperature

After taking all the constraints into consideration, an array configuration of 15 circuits of 4 panels in series with a flow rate of 0.84 gpm/circuit was chosen. This system was analyzed using Excel and the performance of the system was examined throughout the analysis period of 9am to 4pm for a typical day in each month of the year. The hours of operation of the system were determined by looking at the system performance during the analysis period. The system will turn on once the system can produce a hot water temperature of at least 183 F for cooling and 113 F for heating. Any time the system operates below these temperature points the entire solar system, chiller and cooling tower would be shut off.

The cooling tower that was selected for the adsorption chiller was size at 116.6% the capacity of the chiller. The cooling tower sizing conditions can be seen in Table 8.3.1. Oversizing the cooling tower allowed for a significant increase in CHW output by decreasing the CW return temperature as low as possible; by combining an increase CHW temperature of 50 F, a HW input of at least 195 F and a CW return temperature of 76 F the chiller has the ability to operate upwards of 140% of its nominal capacity. Figure 8.2.1 shows the chiller performance curves for various condenser water return temperatures at 50 F CHW output, and to further encourage the oversizing of the cooling tower, the price difference between the selected tower and the model rated at 100% capacity is only \$3000. Unfortunately this performance advantage is not seen in any energy modeling done for this thesis project due to the lack of sophistication in modeling software used.

TONNAGE CHANGE BASED ON HOT WATER AND COOLING WATER TEMPERATURES

All data is for standard $\underline{\mathbf{50}}$ F chilled water and maximum tonnage mode.

Figure 8.3.1: Chiller Performance Curve at 50 F CHW (Provided by PowerPartners, Inc.)

Table 8.3.1: Cooling Tower Sizing Conditions		
Tower Water Flow	72 GPM	
Hot Water Temperature	95 F	
Cold Water Temperature	76 F	
Wet-Bulb Temperature	71 F	

8.4 System Configuration

Due to the area limitation, the solar thermal system is unable to meet the demand of the chiller, however it does provide a significant amount of energy throughout the year. The chiller selected was a 10 ton chiller which is not capable of meeting the entire radiant cooling load. This requires campus chilled water to be coupled with the radiant system through a heat exchanger in order to meet the rest of the radiant cooling load as well as compensate for the fluctuations in CHW temperature due to the cycling of the adsorption chiller. This configuration will ensure a constant CHW water temperature of 50 F is being delivered to the system. The sun is also not constant, so hot water temperature will fluctuate throughout the day. Auxiliary steam heat will be used to ensure a constant temperature of 195 F HW will be supplied to the chiller for proper operation. Figure 8.4.2 shows the heating and cooling load relationship with useful direct normal solar radiation gain.

Figure 8.4.1: Heating, Cooling and Solar Exposure Relationship

The cyan lines in Figure 8.4.1 represent a switch in the solar system operation from heating to cooling mode. During the months of May to September, the solar radiant levels appear to be lower because the solar radiant line is the useful energy consumed in either the heating or cooling modes. Solar cooling is an energy intensive process compared to solar heating, where 20,000 BTUs are required to produce one ton of cooling compared to around 15,000 BTUs per ton for an electric compression driven system.

All new equipment was added to the penthouse. Figure 8.3.2 shows the arrangement of the new equipment in the penthouse. Figure 8.4.3 shows the interactions between each piece of added equipment.

Biobehavioral Health Building | University Park, PA | Mechanical | Ling | Jake Copley | Final Report | Due Date 4/4/2012

Usit 25: Core ,		B
	Unit2:Som	

Solar to Chiller Steam Aux Chiller to Radiant Heat Campus CHW Aux	Solar Circulator Chiller Circulator	Radiant Heating Radiant Cooling Circulator Circulator	Electical Panel Cooling Tower	
4 q q q 🦉				
		Chiller		

Figure 8.4.2: Penthouse Equipment Layout

Figure 8.4.3: System Flow Diagram

Biobehavioral Health Building | University Park, PA | Mechanical | Ling | Jake Copley | Final Report | Due Date 4/4/2012

8.5 Pump and Pipe Sizing

Piping was sized to meet the requirements of the system. Table 8.5.3 shows the pump sizing requirements for the solar circulator pump, chiller pump and condenser water pump.

Table 8.5.1: Solar, Chiller, Condenser Pump Sizes										
Pump	System Head Loss (ft)	System Flow (gpm)	Pump HP	Impeller Size (in)						
Solar System	29	10.08	0.25	5.25						
Chiller Pump	48	40	1	6.5						
Condenser Water	17	72	0.5	4.75						

Section 9: Electrical Breadth

9.1 Objective

Account for the additional electrical load from the new equipment added. The reduction of each AHU will also have a reduction in electrical demand due to lower fan power requirements. The additional pumps, chiller and cooling tower loads will be accounted for in the new electrical components.

9.2 Calculations

Once the horsepower of each pump was determined, the full load amps was determined using NEC 2008. Table 9.2.1 shows the full load amps, branch circuit wire size and break size for each new piece of equipment. Chiller full load amps were taken from the product data sheet. All new equipment with the exception of the solar circulator pump was selected to run at 208V three phase, the solar circulator pump will operate at 120V single phase.

	Table 9.2.1: New Equipment Power Requirements											
Equipment	HP	V/PH/HZ	FLA	Branch Circuit Wire	Breaker Size							
Solar Circulator Pump	0.25	120/1/60	5.8	#12 AWG	20							
Radiant Heating Pump	0.75	208/3/60	3.5	#12 AWG	20							
Radiant Cooling Pump	1	208/3/60	4.6	#12 AWG	20							
Condenser Water Pump	0.5	208/3/60	2.4	#12 AWG	20							
Chiller Pump	1	208/3/60	4.6	#12 AWG	20							
Cooling Tower Fan	2	208/3/60	7.5	#12 AWG	20							
Chiller	-	208/3/60	4.72	#12 AWG	20							

The panel being used for the new equipment is a spare panel that was unused from the original design, the feeder and panel size was left as is since it can easily accommodate the additional load. None of the equipment added had a large electrical load, all components branch circuits were sized at #12 AWG wires with 20 A breakers. VFDs and motor starters that were capable of handling each of the loads were also selected. Table 9.2.2 shows which motors were equipped with VFDs and which are single speed.

Table 9.2.2: Schedule of VFD/Single Speed Motors						
Solar Circulator Pump	Single Speed					
Radiant Heating Pump	VFD					
Radiant Cooling Pump	VFD					
Condenser Water Pump	Single Speed					
Chiller Pump	VFD					
Cooling Tower Fan	Single Speed					

9.3 Equipment Adjustment and Additions

The additional electrical panel shown in the electrical design documents will be relocated from the ground floor electrical room to the penthouse. The panel provides power to the new equipment: chiller, cooling tower and pumps. Since a size-able amount of the heating and cooling load was shifted from the air system to the radiant system the air handling unit fans were reduced in size. Table 9.3.2 shows the new fan sizes, their respected power requirements, breaker and branch circuit wire sizes. All fans for the new air handling units will operate on 480V three phase as the original design called for. The new location for the panel can be seen in figure 8.3.1.

Table 9.3.2: New AHU Fan Power Requirements										
AHU Fan by Zone	HP	FLA	Branch Circuit Wire	Breaker Size (A)						
Core	7.5	11	#10	30						
Lecture Hall	5	7.6	#12	20						
North	7.5	11	#10	30						
South	7.5	11	#10	30						
Public	7.5	11	#10	30						

Section 10: Structural Depth

10.1 Objective

Due to the addition of solar energy conversion systems being installed on the roof of BBH, the extra weight on the solar panels will have to be considered when installing the system. The roof structure will be analyzed and modified if necessary to accommodate the extra load from the solar panels. A typical floor will also be analyzed to account for the additional weight of the internal thermal mass.

10.2 Calculations

The fourth floor was analyzed to accommodate the additional weight of the new internal walls.

Table 10.2.1: Wall Dead Load Calculations							
Material	Weight (PSF of Wall Area)						
8" HW CMU	65						
4" Brick	38						
4" Steel Stud w/ 1/2" GYP	8						
New Wall Dead Load	111						
Floor to Floor Wall Height	14						
(ft)							
Estimated Length of	947						
Walls (ft)							
Area of Wall (SF)	13258						
Total Weight of Wall (lbs)	1471638						
Area of Floor (SF)	12934						
New Dead Load (PSF)	114						

Table 10.2.1 shows the new dead load of 114 PSF due to the additional thermal mass; the original design dead load was 20 PSF for comparison. A single interior bay was analyzed where the beam spacing is approximately 10.33'. The loads used for the calculation can be found in Table 10.2.2.

10.2.2: Deck Loads								
Dead Load (PSF)	114							
Live Load (PSF)	80							
Super Imposed Dead Load (PSF)	10							
Total Load on Deck	204							

Unshored composite deck was selected with normal weight concrete. This was the same type of selection originally made in the design, however with the switch from lightweight concrete to normal weight. Using a deck span of 10' 6" with a three span continuous scenario from the Vulcraft deck catalogue 2" deep 17 gauge VLI deck (2VLI17) with a topping of 4.5" normal weight concrete was selected, which can hold up to 10' 7" unshored clear span and 219 PSF load at at space of 10' 6" and has a deck weight of 69 PSF. The original deck selected was a 3" deep, 18 gauge deck with 3.25" topping of lightweight concrete.

The beams in this interior bay have a span of 29.5' and are spaced 10.33' apart. Using factored loads, the distributed load on the beam was determined to be W=3.6976 KLF. The loads used for the beam analysis can be seen in Table 10.2.3.

Table 10.2.3: Beam Loads							
Deck Weight (PSF)	69						
Dead Load (PSF)	113						
Super Imposed Dead Load (PSF)	10						
Live Load (PSF)	80						

W=1.2DL+1.6LL

$M=WL^2/8$

The maximum moment seen on the beam was determined to be M=402 ft K. A W 24x68 was determined to be an adequate size to support the additional load. Live and total load deflection checks were done to ensure proper serviceability requirements are met.

The live load deflection was determined to be 0.26" which is less than the code required 0.983". The total load deflection was determined to be 0.9" which is less than the code required 1.474". Both requirements are met with the selected W24x68 beam, for comparison the original beam specified was a W 16x31.

In review a new deck size of 2" deep 17 gauge VLI deck with 4.5" topping of normal weight concrete on W 24x68 beams will support the newly added weight of the thermal mass on the fourth floor.

The solar panels being added to the sloped slate roof come with mounting kits that attach to a subframe at six points. A frame consisting of HSS 2x1x1/8 members was designed to attach the mounting kits with solar panels to the roof framing, with the additional framing and panels, the roof framing would have to be analyzed to account for the extra load but due to the complexity of the roof structure, only the sub-framing was design to accommodate the additional load. Table 10.2.4 shows the weight of each panel and the approximate load at each connection point. Since the panels butt up to each other the load at each point will be double to account for each panel.

Table 10.2.4: Solar Panel Loads							
Weight of Each Panel (lbs)	252						
Load per Connection (lbs)	84						

Three cross beams will run the length of the room to support the weight of the panels. Each cross beam will be attached to the existing roof structure. Figure 10.2.1 shows the layout of the additional structural members. Each red box represents a solar panel and the blue lines represent the additional HSS structural members that were added to support the panels.

Figure 10.2.1: Typical solar Panel Layout with Supporting Structure

Section 11: Energy and Cost Evaluation

11.1 Energy Savings

Figure 11.1.1 shows the comparison of annual energy intensity for each of the four system configurations. Alternative four, which consists of all explored systems combined together results in an energy consumption of approximately 40 kBTU/SF, where the existing system consumed around 52 kBTU/SF this is about a 23% reduction in energy consumption.

11.1 Cost

Table 11.1.1 shows the cost of the existing mechanical system, equipment being replaced, new equipment and the additional cost that would be added to the existing system cost.

Table 11.1.1: Alternative 4 (Total) First Cost							
System	Cost (\$)						
Existing System	\$3,424,000.00						
Equipment Replaced	\$213,151.00						
Equipment Added	\$1,365,924.00						
New System	\$4,576,773.00						
Difference	\$1,152,773.00						

When performing a discounted payback, the system should pay for itself in just under 58 years. Given the design goal of the building to last 100 years, this system will produce a net savings of \$742,746.24 or compared to the existing system it would save \$1,852,237.56 over the life of the building. The payback of each individual system can be seen in Table 11.1.2. This table clearly shows that the solar thermal system has the quickest return on investment with a simple payback period of 12 years.

Table	Table 11.1.2: System Payback Period										
System	First Cost	Estimated Savings/ Year	Simple Payback Period (years)								
Heat Recovery	\$104,458	\$4,600	23								
Radiant Heating/ Cooling	\$1,100,923	\$3,406	323								
Solar Thermal	\$160,544	\$6,932	23								
Combined Systems	\$1,365,925	\$14,938	91								

Section 12: Conclusion and Recommendation

When analyzing the payback period of each system configuration, the Penn States goal of building a 100 year building was taken into account and used as the analysis period.

Unfortunately, some of the performance advantages of the system are not seen in any of the energy model predictions. Due to the lack of sophistication of the software used for energy usage estimation, the additional performance boost of the chiller from the over size cooling tower, or increase in performance from boosting chilled water from 45 F to 50 F is seen in the results. Another issue that was encountered was the difficulty in modeling a radiant heating and cooling system. Efforts to represent the

performance of a radiant system, both heating and cooling systems were modeled as radiant fin tube systems. This modeling technique allows for a reasonable estimate of the energy consumption of the system, without modeling the exact system designed. In the modeling software, both design heating and coolings loads were set as design constraints and allowed the software to simulate the annual energy consumption to heat and cool the space, as well as the pump energy required to operate each system. Since the modeled system is not exact, there will be difference between the performance of the modeled system and the performance of the actual system designed.

12.1 Thermal Mass

Thermal mass option 1 reduced the modeled cooling load by 5 tons as well as a 1.3 kBTU/SF or about 2.5% reduction in annual mechanical system energy consumption. This option also has the ability to counter the negative acoustical effects imposed on each space from the radiant ceiling tiles that replace acoustical ceiling tiles. The additional material needed for the walls was not priced but the savings from the new wall composition was not significant enough to say that the upfront cost is worth the investment.

12.2 Radiant System

The radiant system turned out to be the most expensive system explored in this analysis. The total system provided a 1 kBTU/SF or about 2% reduction in annual mechanical system energy consumption. Three recommendations to improve the investment would be one, to reduce the area that is conditioned by radiant panels to reduce the first cost and slightly improve the payback period, two; increase the flow rate or HW temperature through the panels, this would increase the BTU output for each panel which would reduce the number of panels needed and three; avoid using a radiant heating and cooling system. BBH is already an efficient, well designed building.

12.3 Heat Recovery

The heat recovery system was the least expensive system that was explored. Incorporating this system into the building resulted in approximately a 4 kBTU/SF or 7.6% reduction in annual mechanical system energy consumption. This is the first system encountered that would provided a reasonable simple payback period of 23 years which is well within the life of the building.

12.4 Solar System

The solar thermal system is the second most expensive system investigated. This system provided approximately a 13% reduction in heating energy and a 4% reduction in cooling energy required. Like the heat recovery system, this solar system had a 23 year payback period.

12.5 Recommendation

In conclusion, the object of this thesis was satisfied in finding methods to reduce the building energy consumption. However, not all systems that were investigated provided an energy reduction in an economic fashion. It would be recommended to not follow through with increasing internal thermal mass or install a radiant heating and cooling system. The first cost of the radiant system is too high and the savings do not justify the means. However, a useful system that can be drawn out of this is keeping the existing VAV system and incorporating the heat recovery system and the solar thermal system. The solar

thermal system could be readjusted to feed into the AHU hot and chilled water loops and still provide a reasonable return on investment. However, without reducing the size of the existing AHUs, there may not be enough room in the building for the additional equipment required for the solar system.

The combination of the heat recovery and solar system greatly reduce the first cost of the system while still providing a 8.6 kBTU/SF or 16.5% reduction in annual mechanical system energy consumption. The discounted payback for this system is about 16 years, a significant improvement over the alternative that included the radiant system. Over the 100 year analysis period, this new system will save about \$1.6 million dollars which is about 4 times what the additional equipment costs. Figure 12.5.1 shows the comparison of the new recommended system to the previous 4 alternative systems explored.

References

ASHRAE. (2007). *Standard 62.1 - 2007, Ventilation for Acceptable Indoor Air Quality.* Atlanta, GA: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc.

ASHRAE. (2007). *Standard 90.1 - 2007, Energy Standard for Buildings Except Low-Rise Residential Buildings.* Atlanta, GA: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc.

ASHRAE. (2001). Handbook of Fundamentals. Atlanta: ASHRAE

ASHRAE. (2007). Handbook of HVAC Applications. Atlanta: ASRHAE

Bohlin Cywinski Jackson. Architectural Construction Documents. Wilkes-Barre, PA.

Bruce E. Brooks & Associates. <u>Electrical Construction Documents</u>. Philadelphia, PA.

Bruce E. Brooks & Associates. Mechanical Construction Documents. Philadelphia, PA.

Copley, Jake. *Project Charter - Biobehavioral Health Building.* Working Paper. University Park, PA: Penn State, 2011. Print

Duffie, John A., and William A. Beckman. Solar Engineering of Thermal Processes. 3. Hoboken: John Wiley & Sons, Inc, 2006. Print.

Kalogirou, Soteris A. Solar Energy Process and Systems. 1. Burlington: Elsevier Inc., 2009. Print.

"Radiant Panel Example-Cooling." Radiant Heating & Cooling Systems. Price, n.d. Web. 2 Apr 2012. <<u>http://www.price-hvac.com/Catalog/Section_H/Design_Guide/Cooling_Design_Calculations/</u> Radiant_Panel_Example.asp&xgt;.

United States. Energy Information Administration. Table E2A. Major Fuel Consumption (BTU) Intensities by End Use for All Buildings, 2003. 2003. Web

USGBC. (2009). *LEED 2009 for New Construction and Major Renovations*. United States Green Building Council.

Appendix: Radiant Calcs

Floor		around		1	IS L				econa			This was				ł				
Zone Sensible (BTU.		Core 2042	North 403(South 4660	Core 419(Public 1050	North 475(South 7990	Core 534(Public 929(North 520(South 981(Core 558(Public 784(North 551(South 926	Core 304(Public 706t	12	
hr) (BTU		00 1211	00 116	J0 133.	J0 157	00 337	00 119.	00 199.	00 179	270,	121	229, 229,	J0 180.	239, 239,	JO 153.	70 197i	JD 93C	205.	144700	138
t Load Ar I/hr)		100 24	300 2	300 2	700 3	7 00	300	00	300	00 5	00 2	100 4	000	4 00	300 2	700 3	100	500 4	413800	
ea (SF) Ma		1149.8	354.8	650.6	436.6	053.4	350.7	3896	770.7	454.4	354.7	410.6	770.7	935.8	950.3	582.6	849.8	005.3		
# of anels		3622	353	398	515	1058	353	584	566	818 5	353	662	566	740	443	537	277	601		
TWM TWT										0 52.5										
DT Degrees F)										22.5										
Ventilation Rate (CFM/ SF)										0.128										
Ventilation Air (CFM)		3091.2	301.4	339.3	439.9	902.8	300.9	499	482.6	698.2	301.4	564.6	482.6	631.8	377.6	458.6	236.8	512.7		
ž										0.0032										
Wroom										0.0102										
Cooling Capacity of Ventilation Air (BTU/hr)	Latent Sensible	104729.0102008.8	10211.9 9946.7	11494.7 11196.1	14903.3 14516.2	30588.1 29793.6	10194.1 9929.4	16895.5 16456.7	16352.2 15927.4	23653.8 23039.4	10211.5 9946.3	19127.2 18630.4	16352.2 15927.4	21404.8 20848.8	12794.4 12462.1	15536.4 15132.9	8021.9 7813.6	17369.5 16918.4		
Adjusted Ventilation Air (CFM)		3,574.4	342.4	392.6	463.4	994.7	351.2	587.4	528.3	796.9	357.1	675.9	531.3	705.4	451.6	581.5	274.5	605.1	12,213.7	
Adjusted Cooli Ventilation /	Latent	121,100.0	11,600.0	13,300.0	15,700.0	33,700.0	11,900.0	19,900.0	17,900.0	27,000.0	12,100.0	22,900.0	18,000.0	23,900.0	15,300.0	19,700.0	9,300.0	20,500.0	292,700.0	46
ng Capacity of Vir (BTU/hr)	Sensible	117,954.5	11,298.7	12,954.5	15,292.2	32,824.7	11,590.9	19,383.1	17,435.1	26,298.7	11,785.7	22,305.2	17,532.5	23,279.2	14,902.6	19,188.3	9,058.4	19,967.5	285,097.4	
Required Radiant Sensible Cooling (BTU/ hr)		86,245.5	29,001.3	33,645.5	26,607.8	72,175.3	35,909.1	60,516.9	35,964.9	66,601.3	40,214.3	75,794.8	38,267.5	55,120.8	40,197.4	73,411.7	21,341.6	50,632.5	755,402.6	62.95021645
BTU/h/SF		4	12	13	80	10	15	16	10	12	17	17	10	ŧ	14	20	12	13		
Panel Size (Feet)		2	2	2	4	2	2	2	2	2	2	2	2	2	2	2	0	0		
Panel Cooling Capacity (BTH/hr)			121	121	181	121	121	121	121	121	121	121	121	121	121	121	121	121		
Number of Panels Required			240	278	147	596	297	500	297	550	332	626	316	456	332	607	176	418	6,170	
Max # of Panels		3,622	353	398	515	1,058	353	584	566	818	353	662	566	740	443	537	277	601		
Zone Max Number of Panels in Series										ç	2									
Zone Flo Rate Require (GPM)		0.0	2.6	3.0	2.4	6.4	3.2	5.4	3.2	5.9	3.6	6.7	3.4	4.9	3.6	6.5	1.9	4.5	67.1	

mber of 0 Tums									72.0										
ath of Nu e per 18(ries cuit		4.0	4.0	18.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
VL Leng Pipe Set Cir		4	4	28	41	14	4	4	4	4	4	4	14	14	41	14	4		
Delta P		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Flow per Series Circuit		0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
Number of Series Circuits		23	25	ŧ	56	24	38	33	41	25	4	23	-	29	4	15	96		
Zone Flow Rate Required (GPM)	0.0	2.3	2.6	2.2	5.7	2.4	3.8	2.3	4.2	2.6	4.6	2.4	0.1	3.0	4.6	1.5	3.7	48.1	
Zone Max Number of Panels in Series									ç	2									
Max # of Panels	3,622	353	398	515	1,058	353	584	566	818	353	662	566	740	443	537	277	601		
Number of Panels Required		273	304	126	670	285	451	272	490	300	533	281	13	348	534	179	437	5,497	
anel Heating Capacity (BTH/hr)		237	237	485	237	237	237	237	237	237	237	237	237	237	237	237	237		
Panel Size F (Feet)		2	2	4	2	2	0	0	0	0	2	2	2	2	2	2	2		
BTU/h/SF	3,313	27	27	18	23	29	27	17	21	30	29	18	-	28	35	23	26		
Required Radiant Sensible Heating (BTU/ hr)	80,008,681.8	64,663.8	72, 151.8	61,312.6	158,828.4	67,546.4	106,779.0	64,488.3	116,193.8	71,051.4	126,354.9	66,525.8	3,188.3	82,512.5	126,463.9	42,500.5	103,544.2	1,334,105.5	
Heating Capacity of Ventilation Air (BTU/hr)	39318.2	3766.2	4318.2	5097.4	10941.6	3863.6	6461.0	5811.7	8766.2	3928.6	7435.1	5844.2	7759.7	4967.5	6396.1	3019.5	6655.8	95032.5	
Ventilation Air (CFM)	3574.4	342.4	392.6	463.4	994.7	351.2	587.4	528.3	796.9	357.1	675.9	531.3	705.4	451.6	581.5	274.5	605.1		
Ventilation Rate (CFM/ SF)									0.128										
DT (Degrees F)									55.5										
TWM TW									28 125.5										
# of # of # anels	3622	353	398	515	1058	353	584	566	818 1	353	662	566	740	443	537	277	601		
rrea (SF) Ma	24149.8	2354.8	2650.6	3436.6	7053.4	2350.7	3896	3770.7	5454.4	2354.7	4410.6	3770.7	4935.8	2950.3	3582.6	1849.8	4005.3		
Heat Loss / (BTU/hr)	80048000	68430	76470	66410	169770	71410	113240	70300	124960	74980	133790	72370	10948	87480	132860	45520	110200		
Zone	Core	North	South	Core	Public	North	South	Core	Public	North	South	Core	Public	North	South	Core	Public		
Floor	Ground		1	ISIL			Concertainty	Dinnac			This was				11-1				

System He Loss (ft)									ц с	0.01									
Floor Head Loss (ft)			0	0			ç	ų t			1	4.7			c	9.0			
Head Loss per Zone (ft)		7.1	7.1	7.8	7.1	3.9	3.9	3.9	3.9	4.2	4.2	4.2	4.2	7.6	7.6	7.6	7.6		
Rise Height (ft)			0 00	70.0			077	0.41			0.7	14.0			077	0. <u>+</u>		70.0	
Delta P/100ft			•	2			10	1.0			0	0.3			c	0.7			
Rise Pipe Size (in)			0	0.0			0	0.0			ŭ	D 17			u T	2			
Rise Pipe Flow (GPM)			57.1	1.10			0 01	0.20			1 10	1.00			101	0.01			
Delta P/100ft			r ,	22			1	1.0			c	0.0			c	0.2			
Floor Pipe Size (in)			u T	0.			0	0.2			0	7.7			u T	2			
Length of Run (ft)							0 4 4 0	0.716							0 200	0.062			
Flow Rate per Floor (GPM)			077	5 5			7 7 7	771			007	0.01			19	0.01			
Pipe Friction Loss for Each Series Circuit		1.7	1.7	2.4	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7		
Equiv Length of Fittings (ft)		192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000		
45 Degree Elbows (K)									16.0										
Number of 180 Turns									72.0										
Length of Pipe per Series Circuit		144.0	144.0	288.0	144.0	144.0	144.0	144.0	144.0	144.0	144.0	144.0	144.0	144.0	144.0	144.0	144.0		
Delta P/L		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Flow per Series Circuit		0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
Number of Series Circuits		20	23	12	50	25	42	25	46	28	52	26	38	28	51	15	35		
Floor Zone	round Core	North	South South	Core	Public	North	South	Core	Public	North	South	Core	Public	North	South South	Core	Public		

											Each Carles				
Loss (ft)	Loss (ft)	per Zone (ft)	ŧ		Size (in)	Flow (GPM)		Size (in)	Run (ft)	per Floor	Loss for	of Fittings (ft)	Elbows (K)		
System He	Floor Head	Head Loss	Rise Height	Delta P/100ft	Rise Pipe	Rise Pipe	Delta P/100ft	Floor Pipe	Length of	Flow Rate	Pipe Friction	Equiv Length	45 Degree	Zone	Floor

stem Head Loss (ft)									9	0.0								
Floor Head Sy Loss (ft)			1	1.6			C	4.0			1	1.4			C L	0.0		
Head Loss I per Zone (ft)		4.9	4.9	5.6	4.9	4.9	4.9	4.9	4.9	4.2	4.2	4.2	4.2	4.6	4.6	4.6	4.6	
Rise Height (ft)			0 00	0.02			-	2			4	2.			0	0.41		
Delta P/100ft			90	0.0			0	0.3			0	6.0			¢	<u>.</u>		
Rise Pipe Size (in)			0	0.0			ŭ	0.7			000	0.2			L T	<u>r:</u>		
Rise Pipe Flow (GPM)			1 01	1.04			C LL C	7.00			1 00	4:22			007	0.21		
Delta P/100ft			, ,	D:			, ,	2			¢	0.0			, ,	D:		
Floor Pipe Size (in)			u T	<u>n</u>			L T	2			u T	<u>n</u>			u T	<u>n</u>		
Length of Run (ft)							0 110	0.110							005.0	0.082		
Flow Rate per Floor (GPM)			007	8.7			0 0 7	0.71			9	0.0			c ç	0.21		
Pipe Friction Loss for Each Series Circuit		1.7	1.7	2.4	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	
Equiv Length of Fittings (ft)		192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	192.0000	
45 Degree Elbows (K)									16.0									
Zone	Core	North	South	Core	Public	North	South	Core	Public	North	South	Core	Public	North	South	Core	Public	
loor	round		1					ninos			Print.	2			1			

Appendix: Solar Thermal Calcs

~									
Heat Supplied by Solar System (BTU/hr)	-581718 -477178 -051490 -204707 -90395,1 34337,4 93231,7	-434586 -152743 109140 215244 232368 232368 232368 249493	-326626 -59840 236255 281794 281794 243264 249686	-462940 -265726 -12634.0 213324 217605 224027 168371	-443354 -182837 111286 298784 279519 279519 262394 228145	-87549.1 175109 288129 290269 298832 298832 298832 298832 298832 256020	-66075.7 207301 290338 290338 296760 271073 266792 230402	-229531 -11745.8 184095 146579 123032 14438 146579	1107619 1314780 1523570 1600017 1615002 1612861 1559346
Chiller Side F Loop Flow	40	04	64	64	64	64	64	64	64
Specific Heat of Water (BTU/ImbF)	-	-	-	-	-	-	-	-	-
Solar Side System Flow (gpm)	12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.6 12.6 12.6 12.6 12.6
lumber of Circuits	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
VHP-30 N	8	8	8	8	8	8	8	8	8
× To (F)	718 154 178 159 490 165 707 173 95 178 37 185 32 188	586 161 743 175 743 175 744 194 194 195 195 195 195	326 167 40 180 555 195 94 197 64 195 86 195	340 160 726 170 34 182 24 194 05 194 05 194 194 191	354 161 337 174 86 189 84 198 119 197 197 196 45 194	49 109 09 122 29 127 69 128 128 128 128 128 128 128 127 20 126	76 110 001 123 138 128 60 128 773 127 92 126 125	531 102 531 102 1965 122 779 120 738 120 738 120 738 120 738 120	381 168 20 179 770 189 012 194 661 194 46 191
5 K	-5817 -4771 -4771 -3514 -903 -903 -903 -903 -903	-4345 -1527 1091 2152 2323 2323 2323	-3266 -598 2362 2817 2817 2817 2817 2436	-4625 -2557 -1265 2133 2133 2176 2176 2176 1683	-4430 -1826 11112 2987 2795 2795 2623 2623	-875 -875 1751 2881 2902 2902 2908 2908 2908 2908 2560	-660 2073 2903 2903 2903 2903 2905 2905 2905 2905 2304	-2295 -117, 1840 1840 1230 1465 1230 1465 1465	-2923 -852 1235 2000 2128 2128 2128
z v	0.2205 2.7								
Overall Heat Transfer Coefficient	1331								
HX Surface Area (SF)	σ								
HX Effectiveness	0.9036	0.9036	9036	9036	0.9036	0.9036	0.9036	0.9036	0.9036
Outlet Temperature (Degree F)	81 99 147 167 189 199	107 156 202 221 224 224 224 224	126 172 225 232 232 232 232 232 232	102 138 181 220 221 222 213	105 151 203 235 232 229 229	98 144 164 165 165	101 149 164 165 153	73 111 145 139 138 138	62 98 135 148 151 141
Inlet Temperature (Degree F)	56 81 121 147 167 179	55.9 107 156 179 179 179	69.6 126 172 179 179 179	71.6 102 138 179 179 179	60 105 151 179 179 179	52.5 98 113 113 113	57.4 101 113 113 113	33.2 73 111 113 113 113	27.8 62 113 113 113
Specific Heat of Fluid (BTU/ ImbF)	0.7	0.7	2.0	0.7	0.7	0.7	0.7	0.7	2.0
Flow Rate (GPM)	0.84 0.84 0.84 0.84 0.84 0.84 0.84	0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84	0.84 0.84 0.84 0.84 0.84 0.84 0.84	0.84 0.84 0.84 0.84 0.84 0.84	0.84 0.84 0.84 0.84 0.84 0.84	0.84 0.84 0.84 0.84 0.84 0.84 0.84	0.84 0.84 0.84 0.84 0.84 0.84 0.84	0.84 0.84 0.84 0.84 0.84 0.84 0.84	0.84 0.84 0.84 0.84 0.84 0.84 0.84
Useful Gain per Collector (BTU/hr)	7296 5399 6491 7580 5903 6442 5991	14924 14555 13525 13176 13176 13176	16472 13778 15291 15729 13739 15729 15729	8844 10701 12554 12193 12193 12414 12746 9871	13266 13454 15190 16606 16606 14727 14727	13266 13565 14880 14990 15433 14659 13222	12934 14118 14934 15326 13778 11899	11607 11247 10114 7570 6354 7459 7570	9949 10699 10783 10330 11103 10993 8229
Ambient Temperature	29	£5.0	Ф. 09	71.6	8	52.5	57.4	S. S.	27.8
Fotal Thermal Loss ((BTU/ hr)/sfF))	0.006567	0.006567	0.006567	0.006567	0.006567	0.006567	0.006567	0.006567	0.006567
eat Removal . Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Total H Collector Area (sf)	120.16	120.16	120.16	120.16	120.16	120.16	120.16	120.16	120.16
Collector Area (sf)	30.04	30.04	30.04	30.04	30.04	30.04	30.04	30.04	30.04
/ Number of Collectors	4	4	4	4	4	4	4	4	4
.verage Direct Normal (BTU hr/sf)	89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	135 132 112 112 120 120	149 125 139 143 128	80 97 114 111 116 116 90	120 122 138 151 142 134	120 123 135 136 136 136 136	117 128 136 139 127 127	105 102 92 69 68 68	99 94 94 1001 75
May A	9,10 10,11 11,12 12,1 1,2 2,3 3,4	June 9,40 10,11 11,12 12,1 2,3 3,4	July Hour 10,11 11,12 12,1 23,3 3,4	August Hour 9,10 11,11 11,12 12,1 12,1 12,3 3,4	September Hour 1,11 1,12 12,1 12,1 1,2 3,4 3,4	October 9,10 11,11 11,12 11,12 2,3 3,4	November Hour 9,10 11,11 11,12 12,1 1,2 2,3 3,4	December Hour 9,10 11,11 11,12 12,1 1,2 2,3 3,4	January Hour 9,10 11,11 11,12 12,1 12,1 2,3 3,4

	Heat Supplied by Solar System (BTU/hr)			-327611	-201591	-75882.6	40953.2	159460	131633	123070			-112960	220147	347812	386343	403467	360656	322125			-77756	204061	270922	238814	243095	202424	183158			
	Chiller Side Loop Flow						40									40									40						
	Specific Heat of Water (BTU/ImbF)						-									-									-						
	Solar Side System Flow (gpm)			12.6	12.6	12.6	12.6	12.6	12.6	12.6			12.6	12.6	12.6	12.6	12.6	12.6	12.6			12.6	12.6	12.6	12.6	12.6	12.6	12.6			
	Number of Circuits						15.0									15.0									15.0						
	НР-30						8									8									8						
	۲۰ (F) ر			97	103	109	115	121	120	119			107	124	130	132	133	131	129			109	123	127	125	125	123	122			
	Č X			27611	01591	75883	0953	59460	31633	23070			12960	20147	47812	86343	03467	60656	22125			77756	04061	70922	38814	43095	02424	83158			
	5			ý	9	17	4	41	¥	1			7	22	õ	36	40	36	32			7	20	2	53	24	20	Ŧ			
	2 0																														
	Overall Heat Transfer Coefficient (BTU/hfSFF)																														
	HX Surface Area (SF)																														
	HX Effectiveness						0.9036									0.9036									0.9036						
	Outlet Temperature (Degree F)			55	78	100	120	141	136	135			93	152	174	181	184	176	170			66	149	161	155	156	149	145			
	Inlet Temperature (Degree F)			35.9	55	78	100	113	113	113			34.5	93	113	113	113	113	113			46.7	66	113	113	113	113	113			
	Specific Heat of Fluid (BTU/ ImbF)						0.7									0.7									0.7						
	Flow Rate ((GPM) o			0.84	0.84	0.84	0.84	0.84	0.84	0.84			0.84	0.84	0.84	0.84	0.84	0.84	0.84			0.84	0.84	0.84	0.84	0.84	0.84	0.84			
	Useful Gain per Collector (BTU/hr)			5748	6508	6492	6034	8235	6798	6356			17245	17203	17962	19952	20836	18625	16636			15477	14554	13991	12333	12554	10454	9459			
	Ambient Femperature						35.9									34.5									46.7						
	otal Thermal Loss ((BTU/ hr)/sfF))						0.006567									0.006567									0.006567						
	eat Removal T Factor						0.92									0.92									0.92						
	Total He Collector Area (sf)						120.16									120.16									120.16						
	llector sa (sf)						0.04									0.04									0.04						
	Jumber of Co Collectors Ar						4									4									4						
	Average Direct Normal (BTU/ I hr/sf)			52	59	59	55	75	62	58			156	156	163	181	189	169	151			140	132	127	112	114	95	86			
Hour	May	FEB	Hour	9,10	10,11	11,12	12,1	1,2	2,3	3,4	March	Hour	9,10	10,11	11,12	12,1	1,2	2,3	3,4	April	Hour	9,10	10,11	11,12	12,1	1,2	2,3	3,4			

Appendix: Pump Sizing Calcs

	Radiant Cooling Circulator	13.9	4	13.5	ı	ı	ı	67.1	I	ı	I	ı		31	-	თ	1150	Series 80 1.5x.15x9.5	208/3/60	4.6	0.6	0.99430656	
	Condenser Water Pump	ı	9	ı	I	7.375	ı	72	2.5	65	3.5	3.4125		17	0.5	4.75	1750	Series 60 1.5x1.5x5.25	208/3/60	2.4	0.6	0.51876864	
Pump	Radiant Heating Circulator	16.2	ı	8.6	I	ı	ı	48.1	I	ı	I	ı		25	0.75	ω	1150	Series 80 1.5x1.5x9.5	208/3/60	3.5	0.6	0.7565376	
	Chiller Circulator	39.2	0	ı	ı	ı	ı	40	2.5	350	1.3	6.825		48	-	6.5	1750	Series 60 1.5x.15x7	208/3/60	4.6	0.6	0.99430656	
	Solar Panel Circulator	11.5	ı	I	14	I	I	10.08	0.75	250	0.6	2.25	1.0381	29	0.25	5.25	1750	Series 60 1x1x5.25	120/1/60	5.8	0.6	0.72384	
	Head Loss	(11) XH	Chiller (ft)	Radiant Panel (ft)	Solar Panels (ft)	Cooling Tower (ft)	Building Height (ft)	Flow (gpm)	Pipe Size (in)	Length of Pipe (ft)	Delta P/100ft	Friction Loss (ft)	Effect of Propylene Glycol	Total (ft)	Pump HP	Pump Impeller Size (in)	Pump RPM	Model	ZH-H4-V	Current (A)	Power Factor	Consumption (kW)	

Appendix: Structural Breadth

DEADLOADS: (

LUAD ANDYSIS'S

- - 1'

(5+38+8= 111 PSF

S'INCMU : N GE PSF

4" BRICK: 38 BF

STEEL STUP : 8 PSF Y2"GYP

LIVE LOAD-

OPPICE: SO PSF

LENGTH OF WALL & 148 XZ

-. 14

165 16 × 32 + 40 × 2 861 × 11 × MISC WALLS

947' OF WALL

NEW DEAP LOAD = 1325858 × 111PSP = 1471638165

DISTRIBUTED DL 1471638 165 = 113 PSF OLD DEAD LOAD 20 195F

DECK AMALYSIS

UNSHORED

USE COMPOSITE DECK

USE NORMAL WEIGHT CONC

BEAM SPACING & 10.33'

LOADS:

DL= 113PSP

LL= 80 PSF

SIDL = 10 PSP (ASSUMPTION)

SUPER IMPOSED LIVE LOAD = 113 + 80 + 15 = 203 PSE USE 10.6" SPAN 3 SPAN

USE 2VLIIT 16'7" UNSHORED CLEAR SPAN C'6" t=4'12" G9PSF G9PSF

BEAM ANALYSIS

W=1,2D+1.6L

D=69+113+10 = 192PSF × 1033' = 1.98 KLF

L= 80 PSF × 10.33' = 0.826 KLF

W= 12 (1.98 Kr) + 1.6 (0.826 Kr)

412 3.6976 KLF

W 21×50

1.1...--

Go Mex= A13 A.K > 402 FL- K + BEAM WEIGHT X

50 R.F.X 29.5= WOL M=W12 = 160 Kf W2 1.45KLP

W 24×62

QOMPX = 574 PE. 167 402 PE 16 + BEAN X

M=217

LIVE LOAD DET	readon check		
5 WL ⁴ · 1728 384 EI	E= 29000 I=	$\dot{W} = Live Lo$ L= Longth (f	$\frac{1}{360}$
W 24×68 , I= 1830 XXX AYIS	int 80 PSFx	6.33 = 6.8204 KF	
5.0.8204.29.5t.1728 384(29000)(1830)	- = 0.26 20.983 V	1 .	354 = 6.983
TOTAL LEVAD DE	PLETON CHEL	4	
5 WL + 1728 384 EI	L= 80 2728	5F-21235 1 = 2,809 KLP	. PSP
5. 2:869: - 29.5 ⁴ 1728 = 0 384 - 29000 - 1830	9 2 1. 475 V	240 -	354 2 1475
6'12" 2VLI 17 DECK N W 24×68 BEAM IN	t= 4/2"		

Construction of the local division of the lo

WALLED DREWALED DCP SHARE THE

.

.